
Eur. Phys. J. D 6, 29–47 (1999) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. We present two different numerical approaches, based on semiclassical Monte Carlo simulations,
for the study of optical lattices associated with Jg → Je atomic transitions, for angular momenta Jg and
Je larger than 1

2
. Our models rely on an adiabatic-type approximation and give a correct description of the

steady-state temperature and localization properties of the lattice, in a large range of parameters. These
models combine the possibility of getting intuitive images of complex fundamental physical processes in
optical lattices, together with particularly reasonable computing times.

PACS. 32.80.Lg Mechanical effects of light on atoms, molecules and ions – 32.80.Pj Optical cooling of
atoms; trapping – 03.65.Sq Semiclassical theories and applications

1 Introduction

The last two decades have been characterized by a con-
siderably growing interest in the field of laser cooling of
atoms [1] and in particular in the field of optical lattices
[2]. Optical lattices consist of micron-sized ordered atomic
samples, originating from the trapping of cold atoms in-
side potential wells resulting from the interference between
several laser beams. In such periodic optical structures,
the atoms, bound by the light, principally undergo an os-
cillatory motion near the bottom of the potential wells
[3–5]. The most important experimental studies of opti-
cal lattices realized so far dealt with the temperature and
localization properties in bright [6–10] as well as in grey
[11–13] one- (1D), two- (2D), or three-dimensional (3D)
lattices. Current studies aim also at the characterization
of the magnetic [13–16] or of the transport properties of
optical lattices [17,18].

The increasing interest for the physics of optical lat-
tices has led to the elaboration of different theoretical
models, which permit to explain and predict a great num-
ber of experimental observations, in a more or less quanti-
tative manner. The first theoretical considerations in the
physics of laser cooled atoms were semiclassical. In such
a description, the atoms experience a random force, the
average of which is a friction force, and the fluctuations of
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which lead to atomic momentum diffusion. The approach
that is generally used in this case consists in deriving a
Fokker-Planck equation [19] from the optical Bloch equa-
tions and requires in particular an adiabatic elimination of
the rapidly varying internal atomic variables. This “tradi-
tional” semiclassical approach was first used in the context
of Doppler laser cooling [20–22], and later in the frame-
work of sub-Doppler optical molasses [23–28]. However,
it was realized that a more complete theoretical model
was necessary in order to give a correct description of the
atomic temperature in the low intensity and large detun-
ing range.

An exact resolution method consists in numerically in-
tegrating the quantum equations, by propagating in time
the density matrix in momentum space, until the system
reaches a steady state [29,30]. An alternative procedure
for characterizing the physical properties of the atomic
system in steady state consists in using the well-known
band model [31]. This quantum model was first introduced
for the Jg = 1

2 → Je = 3
2 atomic transition [31,32], then

generalized in the case of more complex atomic transitions
and used in particular for pump-probe spectroscopy cal-
culations [33]. A third quantum model for the resolution
of the optical Bloch equations consists in replacing the
atomic density matrix by a set of stochastic wave func-
tions and using quantum Monte Carlo simulation tech-
niques. This method was first introduced by J. Dalibard
et al. in the general framework of dissipative problems
in quantum optics [34], and similar formulations followed
for the treatment of particular situations [35]. Such an
approach has been consequently used in the framework of
1D [36] and 3D [37] optical lattices leading to temperature
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evaluations in good agreement with the experimental mea-
surements performed in optical molasses [38] and in opti-
cal lattices [39].

Even if the three above-mentioned quantum ap-
proaches lead to results which are in good quantitative
agreement with the experiments, they all generally involve
particularly lengthy numerical calculations. Furthermore,
these quantum models occasionally suffer from the diffi-
culty to give simple pictures for the physical mechanisms
which are involved in optical lattices, particularly concern-
ing atomic transport phenomena [40].

It is the aim of this paper to present approximate
semiclassical-like approaches based on Monte Carlo nu-
merical simulations for the study of the atom dynamics in
optical lattices. We are interested, in particular, in atomic
transitions, between a ground state (g) of angular mo-
mentum Jg and an excited state (e) of angular momentum
Je = Jg+1, involving large values of Jg, in order to be able
to study commonly encountered experimental situations.
The models presented in this paper make use of an adia-
batic approximation, inspired from the Born-Oppenheimer
approximation of molecular physics: for a given position
of the atom, we first find the energy levels of the sys-
tem and then simulate the atomic motion in the adiabatic
potential associated with these energy levels. The first ap-
proach that we present is based on a generalization of the
semiclassical method introduced by Castin et al. in refer-
ence [41] for Jg = 1

2 . In this approach, the atomic motion
is simulated in the (2Jg + 1)-manifold of optical poten-
tial curves. The second approach relies on an effective bi-
potential method, in which the atomic motion is calculated
using two effective potential curves. We compare the re-
sults of the two models, for different atomic transitions,
and show that they both lead to temperature evaluations
in good agreement with the quantum band model for a
large range of experimental parameters. Furthermore, we
show that such approximate semiclassical approaches per-
mit to obtain new physical insight for complex processes,
such as the local cooling mechanism or the paramagnetism
of optical lattices. In particular, it is possible within the
semiclassical point of view to isolate the effects of the dif-
ferent possible physical factors which act on the atomic
motion (optical pumping, radiation pressure, momentum
diffusion, anharmonicity of the optical potential) in order
to have a better insight in a given physical phenomenon.

The paper is organized as follows. In Section 2, we
briefly review the procedure of the adiabatic elimination of
the excited state from the generalized optical Bloch equa-
tions, which leads to the master equation for the restric-
tion of the density matrix in the ground state. The general
lines of the semiclassical formalism used in the paper are
presented in Section 3. We then illustrate the semiclassi-
cal approach for the 1D lin⊥lin configuration, in the case
of the Jg = 1

2 → Je = 3
2 atomic transition (Sect. 4), and

generalize it for larger values of the ground state angu-
lar momentum Jg (Sect. 5). In Section 6, we present the
effective bi-potential method for Jg → Je = Jg + 1 transi-
tions, and in Section 7 the results of both models, relative
to the atomic temperature, are compared to the quantum

band model. A few other illustrations of the semiclassical
models are also presented.

2 Master equation for the atomic density
matrix

In this section we present some basic notations and then
briefly recall the derivation of the master equation for
the density matrix of a multilevel atom, starting from the
generalized optical Bloch equations. The discussion is re-
stricted to the case of the one-dimensional lin⊥lin laser
configuration.

2.1 General

Let us consider the case of a single multilevel atom inter-
acting with a coherent laser field

EL (r, t) =
1

2
E0 ξ (r) e−iωLt + c.c., (1)

where ξ (r) is a generally non-normalized dimensionless
vector characterizing the spatial profile of the laser po-
larization and E0 is an order of magnitude of the electric
field amplitude. The density matrix ρ, characterizing the
evolution of the atomic system can be written as

ρ =

(
ρgg ρeg

ρge ρee

)
, (2)

where ρgg and ρee are square arrays containing the popu-
lations and the Zeeman coherences, in the ground and in
the excited state, respectively, and where ρeg = ρ†ge is a
rectangular array, characterizing the optical coherences.

The typical experimental range of variation of the laser
intensity and detuning is given by the following two re-
strictive conditions:

sL � 1, (3a)

|∆| � Γ, (3b)

where sL = (DE0)2/2(~∆)2 is the laser saturation param-
eter expressed in the large detuning limit (i.e. when the
condition (3b) is fulfilled), D is the dipole moment of the
atomic transition, ∆ = ωL−ω0 is the laser detuning from
resonance and Γ is the natural width of the excited state.
The weak values of the laser intensity ensure the exis-
tence of longer characteristic internal times in the evolu-
tion of ρgg compared to the ones for ρee. These character-
istic times are on the order of the optical pumping time
between ground state Zeeman sublevels (τp ∼ 1/ΓsL),
which is much longer than the damping time 1/Γ . As a
result, it is possible to adiabatically eliminate the excited
state and the optical coherences, and end up with a single
master equation relative to the restriction of the atomic
density matrix in the ground state ρgg (in what follows,
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we shall use the simpler notation σ for ρgg). This equation
reads

dσ

dt
=

1

i~
[Heff , σ] +

(
dσ

dt

)
relax

. (4)

The above master equation, can be split into two
parts [42]. First, a reactive part, containing the time evo-
lution of σ under the influence of an effective Hamiltonian:

Heff =
p2

2M
+ ~∆′Â (r) , (5)

where p is the momentum operator, M the atomic mass
and r the location of the atomic center of mass. This
Hamiltonian accounts for the atom kinetic energy (first
term of Eq. (5)) and for the light-shifts of the ground
state Zeeman sublevels due to the laser field (second term
of Eq. (5)). The Hermitian operator

Â (r) =
[
d̂− · ξ∗ (z)

] [
d̂+ · ξ (z)

]
, (6)

introduced above is the so-called light-shift operator [43]

(d̂+ and d̂− are the raising and lowering parts of the re-

duced dipole operator d̂ = d/D, respectively). A typ-
ical order of magnitude for the light-shifts is given by
~∆′ = ~∆sL/2 which is the light-shift undergone by a
two-level atom in the presence of a laser field of amplitude
E0. Furthermore, a dissipative part describes the damping
of the density matrix under the influence of the different
processes of photon absorption and emission:(

dσ

dt

)
relax

= −
Γ ′

2

{
Â (r) , σ

}
+

3Γ

8π

∫
d2Ωκ

×
∑
ε⊥κ

B̂†ε (r) e−iκ·rσeiκ·rB̂ε (r) , (7)

where Γ ′ = ΓsL/2 is the total photon scattering rate,
and where we have introduced the dimensionless non-
Hermitian operators B̂ε (r) defined by

B̂ε (r) =
[
d̂− · ξ∗ (r)

] [
d̂+ · ε

]
. (8)

One can notice that in the second term of equation (7), the
integration is performed over the solid angle Ωκ in which
the fluorescence photon of wave vector κ is emitted.

2.2 Case of the lin⊥lin configuration

In the following we shall focus on the case of bright opti-
cal lattices (i.e. corresponding to Je = Jg +1), but similar
considerations can be developed in the case of grey optical
lattices (i.e. corresponding to Je = Jg, or Je = Jg − 1).
The laser field configuration considered in this paper is
the well-known 1D lin⊥lin configuration [23], which con-
sists of two beams counterpropagating along the z-axis,
which have orthogonal linear polarizations (see Fig. 1).
The frequency of the incident beams is tuned on the red

Fig. 1. The lin⊥lin laser field configuration: two laser beams
having the same frequency and intensity, but crossed linear
polarizations counterpropagate along the Oz axis.

side of the atomic resonance, so ∆ = ωL − ω0 < 0. If we
choose the common amplitude of the incident beams to
be E1 = E0/

√
2, the total laser field for this configuration

is given by equation (1), with a local polarization vector:

ξ (z) = cos (kz)ε− − i sin (kz)ε+, (9)

where ε± are the circular basis unit vectors:

ε± =
∓ex − iey√

2
. (10)

We now give the restriction of the master equation in
1D. By integrating equation (7) over the two transverse
directions x and y, one gets [31]:(

dσ

dt

)
relax

=−
Γ ′

2

{
Â (z) , σ

}
+ Γ ′

∫ ~k

−~k
dp

×
∑

q=0,±1

Nq (p) B̂†q (z) e−ipz/~σeipz/~B̂q (z) ,

(11)

where the operators B̂q (z) are expressed in the standard
basis of circular polarisation:

B̂q (z) =
[
d̂− · ξ∗ (z)

]
d̂+
q , q = 0,±1, (12)

and where the angular diagram for spontaneous emis-
sion [44] is given by

N±1 (p) =
3

8~k

(
1 +

p2

~2k2

)
, (13a)

N0 (p) =
3

4~k

(
1−

p2

~2k2

)
. (13b)

Note that, following the Wigner-Eckart theorem and the

definition of d̂, the matrix elements of the operators d̂+
q =

d̂+ · εq (where q = 0,±1) are simply given by

〈JeMe| d̂
+
q |JgMg〉 = 〈Jg 1Mg q|JeMe〉 , (14)

where 〈Jg 1Mg q|JeMe〉 is the Clebsch-Gordan coefficient
connecting the sublevels |Jg, Mg〉 and |Je, Me = Mg + q〉.

The optical pumping equation (4) which characterizes
the internal and external dynamics of an atom interact-
ing with the laser field (1) is the starting point for any
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calculation relative to the atomic system. We shall now
introduce the semiclassical approaches used for numeri-
cally integrating this equation and getting information on
the stationary properties of the atomic ensemble. The two
cases of Jg = 1

2 and Jg > 1
2 will be distinguished and

discussed separately in the following sections.

3 The general formalism of the semiclassical
approach

Let us first discuss the basic steps of the procedure used to
investigate the semiclassical limit of the master equation.
In this limit, because the atomic momentum distribution
has a smooth variation at the scale of the photon momen-
tum, it is possible to derive a Fokker-Planck-type equation
for the time evolution of the semiclassical phase-space dis-
tribution. The Wigner representation [45] is particularly
well suited to this treatment [46]. In this representation,

a [(2Jg + 1) + (2Je + 1)]
2
-dimensional array W (r,p, t) is

associated with the density operator ρ (t). For the 1D situ-
ations presented in this paper we will consider the restric-
tion of the Wigner matrix in the ground state and in 1D.
This matrix, w (z, p, t), representing a quasi-probability
distribution in phase space, is defined by

w (z, p, t) =
1

2π~

∫
du
〈
z + 1

2u
∣∣σ (t)

∣∣z − 1
2u
〉
exp

(
− ip·u

~

)
.

(15)

By considering the Wigner transform of equation (4)
and by using equation (11), we obtain an equation for the
time evolution of the quasi-probability density w (z, p, t).
In all this paper we will limit ourselves to situations where
the variations of the atomic momentum distribution dur-
ing such elementary processes are negligible when com-
pared to the width of this distribution:

∆p� ~k. (16)

This also means that k∆ξ � 1, ∆ξ being the spatial co-
herence length of the atomic wavepacket.

The restrictive condition (16) allows for expanding all
terms in the equation of evolution of w, up to second or-
der in ~k/p (p being the r.m.s. atomic momentum); for
example:

w (z, p± ~k, t) ' w (z, p, t)± ~k
∂

∂p
w (z, p, t)

+
(~k)

2

2

∂2

∂p2
w (z, p, t) . (17)

We now examine more precisely the nature of the resulting
equation of motion, as well as its numerical solution, in the
case where Jg = 1

2 [41,47], and then for Jg ≥ 1.

4 Case of the Jg = 1
2
→ Je = 3

2
atomic

transition

4.1 Nature of the equations

The simplest atomic transition leading to a bright opti-
cal lattice in the case of the lin⊥lin configuration is the
Jg = 1

2 → Je = 3
2 transition. The treatment of this

transition within the semiclassical framework does not
present any major difficulty, since there are only two mag-
netic levels in the ground state and there is no Zeeman
coherence between these two levels (given the fact that
the light field does not induce couplings between the two
states

∣∣g,m = + 1
2

〉
and

∣∣g,m = − 1
2

〉
, the restriction of the

atomic density matrix in the ground state is indeed diag-
onal). The matrix w (z, p, t) is also diagonal in the basis∣∣g,m = ± 1

2

〉
. As a result, in the semiclassical limit one can

identify the quasi-probability distributions wm=± (z, p, t)
to semiclassical “populations”Π± (z, p, t). In this case, the
phenomenological equations characterizing the time evo-
lution of the quantities Π± take the following suggestive
form:[

∂

∂t
+

p

M

∂

∂z
−

dU± (z)

dz

∂

∂p

]
Π± (z, p, t) =

− [γ±∓ (z)Π± (z, p, t)− γ∓± (z)Π∓ (z, p, t)]

+
∂2

∂p2
[D±± (z)Π± (z, p, t) +D∓± (z)Π∓ (z, p, t)] ,

(18)

where U± (z) = U0

2 [−2± cos (2kz)] is the optical bi-
potential (U0 = −2~∆′/3 being the optical potential well
depth [31]) and where

γ±∓ (z) =
Γ ′

9
[1± cos (2kz)] , (19a)

D±± (z) =
7~2k2Γ ′

90
[5± cos (2kz)] , (19b)

D±∓ (z) =
~

2k2Γ ′

90
[6∓ cos (2kz)] . (19c)

The interpretation of equation (18) is quite intuitive [19].
It corresponds to the Brownian motion of a (classical) par-
ticle inside the bi-potential U± (z):

– To zeroth order in ~k/p, one obtains the classical equa-
tions characterizing the effect of optical pumping be-
tween the ground state Zeeman sublevels, for a free
particle of constant velocity (note that ∂

∂t
+ p

M
∂
∂z

is

simply the convective derivative d
dt for a free particle).

The rates γ+− (z) and γ−+ (z) determine the proba-
bility per unit time for a change of the Zeeman sub-
level (spin flip) for each point in space. These quan-
tities are proportional to the optical pumping rate of
the 1

2 →
3
2 transition, γ0 = 2

9Γ
′. Moreover, following

equation (19a), γ+− (resp. γ−+) is zero in sites where
the light polarization is purely σ+ (resp. σ−), which is
quite intuitive.
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– To first order in ~k/p, equation (18) corresponds to the
atomic motion in the presence of the mean radiative

force F± (z) = −dU±(z)
dz ez, which is the first derivative

of the optical potential.
– Second order in ~k/p corresponds to the process of mo-

mentum diffusion, characterizing the effect of heating
along theOz axis during a fluorescence cycle. The coef-
ficients Dmm (z) represent the diffusion due to random
momentum jumps resulting from spontaneous emis-
sion of circularly polarized photons (during such pro-
cesses the atom does not undergo a change of inter-
nal level |m〉). By contrast, the coefficients Dmm′ (z)
with m 6= m′ are related to fluorescence cycles where
the atom, after having absorbed a circularly polarized
photon, undergoes a change of magnetic sublevel by
emitting a photon of linear π-polarization.

4.2 Integration of the equations of motion

The study of the stochastic process represented by equa-
tion (18) is being performed using Monte Carlo simulation
techniques. In order to obtain the algorithm of the simula-
tion, it is convenient to expand the semiclassical equations
of motion in successive powers of the dimensionless param-
eter ε = Γ ′ · dt� 1, dt being the elementary time step of
integration. Suppose for instance that the atom initially
populates the Zeeman level |+〉 at time t. The equation of
motion (18) is equivalent to the stochastic process:

dz (t) =
p (t)

M
dt, (20a)

dp (t) = −
dU+

dz
dt+ θ (r − γ+−dt) f+dt

+ [1− θ (r − γ+−dt)] δp− , (20b)

where θ (x) = 1 for x > 0 and θ (x) = 0 else, and where
the random variables f± and δp± have been introduced in
order to simulate the random momentum kicks undergone
by the atom due to photon exchange with the field. These
variables are related to the different momentum diffusion
coefficients of equation (18) by

〈f± (z)〉 = 0 and
〈
f2
± (z)

〉
=

2D±± (z)

dt
, (21a)

〈δp± (z)〉 = 0 and
〈
δp2
± (z)

〉
=

2D∓± (z)

γ±∓ (z)
. (21b)

Let us underline that γ+−dt is the probability that the
atom has left the level |+〉 after a time step (i.e. at t+dt)
and that the variable $+ = θ (r − γ+−dt) goes to zero
with this same probability (i.e. $+ = 0 if the random
number generator leads to a real number r such that r <
γ+−dt). For the numerical integration of equations (20a-
b), we use a second order Runge-Kutta algorithm. This
choice has been made in order to obtain sufficiently precise
numerical results, in an optimum computing time.

Fig. 2. Variation of the kinetic temperature as a function of
the potential well depth U0 (in recoil units) in the case of
the Jg = 1

2 → Je = 3
2 atomic transition. The full line rep-

resents the result of the semiclassical Monte Carlo simulation,
whereas the dotted one represents the quantum result of the
band model. The numerical simulation involves a sample of
N0 = 5000 atoms, an averaging time of 1000/Γ ′ after an evo-
lution time of 2000/Γ ′ in order to reach steady state, and has
been performed for a laser detuning ∆ = −10Γ . The quantum
calculation is performed within the framework of the secular
approximation and takes into account the first 80 band states.

4.3 Temperature calculations

The numerical integration of the equation of motion us-
ing the semiclassical Monte Carlo simulation allows one
to obtain the steady-state values of the probability distri-
butions Πm (z, p, t). These distributions give access to all
relevant physical quantities characterizing the lattice. In
order to illustrate the semiclassical approach in the case of
Jg = 1

2 , we present in Figure 2 the calculated variation of
the atomic kinetic temperature with the (dimensionless)
potential well depth U0/ER. The kinetic temperature Tk

is defined in 1D as follows:

1

2
kBTk =

p2

2M
. (22)

We have also represented in the same figure (dotted line)
the numerical result of the quantum band model, intro-
duced in reference [31]. By comparing the two curves, one
observes an excellent quantitative agreement between the
semiclassical and the quantum approaches, for the values
of the optimum temperature, as well as for the slopes of
the linear parts of the curves.

By performing similar numerical calculations on other
relevant observables of the atomic motion, such as the
steady-state spatial or momentum distributions, or the
spatial diffusion coefficient in the diffusive regime [18], or
even the fluorescence spectra of the lattice [47], and by
comparing the results to the quantum ones, one could eas-
ily convince oneself that the semiclassical approach leads
to an excellent quantitative agreement with the quantum
calculations. In fact, the case of Jg = 1

2 corresponds to
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a particular situation where the density matrix, as well
as the Wigner function, are both diagonal in the ground
state and therefore the semiclassical approach is rigorous
(to second order in ~k/p).

5 Case of angular momenta Jg >
1
2

A great number of numerical calculations relative to bright
optical lattices performed so far has been based on the
Jg = 1

2 → Je = 3
2 model atomic transition that was

briefly examined in the previous section. However, as it has
been pointed out by Meacher et al. [14] and by Mennerat-
Robilliard et al. [15], several important physical proper-
ties such as the paramagnetism of optical lattices can-
not be understood within the framework of this simple
atomic transition. This section is devoted to the presen-
tation of a first semiclassical treatment suited to more
realistic atomic transitions.

By contrast to the Jg = 1
2 case, the situation is more

complex for a general Jg = J → Je = J + 1 atomic tran-
sition, where Jg ≥ 1, because of the existence of many
magnetic sublevels in the ground state and because of the
presence of Zeeman coherences between these levels. The
two different methods that we use for overcoming these
difficulties rely both on the adiabatic approximation. We
first introduce this approximation and qualitatively dis-
cuss its range of validity. Then we present the two numer-
ical approaches and compare the obtained results.

5.1 Adiabatic potentials and motional coupling: the
adiabatic approximation

In the case of bright optical lattices operating on Jg =
J → Je = J+1 atomic transitions (with J ≥ 1) and in the
1D lin⊥lin laser field configuration, the light-shift opera-
tor is not diagonal in the |Jg,mg〉 basis. However, because
of the absence of π-polarized light occurring for this par-
ticular configuration, only Zeeman sublevels of the ground
state having magnetic quantum numbers of the same par-
ity (−1)(mg−Jg) are mutually coupled by light. One there-
fore distinguishes two families η = 1, 2 of Zeeman sub-
levels, with respect to the parity of the magnetic number.
By diagonalizing the light-shift operator, one obtains the
different curves um (z) of the so-called “adiabatic” poten-
tial. Figure 3 illustrates this potential for the cases of the
Jg = 1 → Je = 2 and of the Jg = 4 → Je = 5 tran-
sitions. One notices in particular that for a given family
(same grey hue on the figure) the potential curves present
avoided crossings. These avoided crossings are due to Ra-
man couplings between the different Zeeman sublevels.
The λ/4 spatial periodicity of the avoided crossings is the
same as the one of the potential wells, but the locations
of the avoided crossings are shifted by λ/8 with respect
to the position of the wells. Moreover, one can note that
the lowest potential curve, exhibiting a spatial alternation
of σ+ and σ− polarized sites with a λ/4 period, does not
cross any other potential curve at any point. As a result,
one may think in a first approach that a moving atom can

Fig. 3. Adiabatic optical potentials for Jg = 1 → Je = 2 (a)
and Jg = 4 → Je = 5 (b) transitions. The potentials are ob-
tained by diagonalizing the light-shift operator given by equa-
tion (5). For both cases, we distinguish by using different grey
hues for the two different sets of levels η = 1, 2. Only mag-
netic levels that belong to the same set η are coupled via the
light. The light-shifts are given in recoil energy units, and the
z-abscissa is given in optical wavelength (λ) units. The figure
has been obtained for ~∆′ = −50ER.

follow adiabatically this potential curve, travelling along
a σ+ and σ− site succession, while undergoing in some
specific locations an optical pumping cycle to another po-
tential curve. In a more precise approach, one would have
to take correctly into account the kinetic energy of the
atoms. In fact, the atomic motion induces additional cou-
plings between the optical potential curves, which lead to
non-adiabatic transitions [48] between the different eigen-
states of the light-shift operator.

In all the following, we suppose that each atom adia-
batically follows its internal state. This assumption con-
sists in neglecting all motion-induced couplings between
the different potential curves. Despite the fact that such
an approximation may appear somehow rough in a first
view, particularly for the case of fast atoms, it turns out
that it leads to a satisfactory description of the atomic
motion, at least in the limit of deep potential wells. It
is, indeed well-known from the band model [31] that in
this regime the atoms are mostly localized in the vicin-
ity of the bottom of the potential wells where the prob-
abilities of non-adiabatic transfers between the different
potential curves are very weak. Furthermore, the use of
the adiabatic approximation will be justified a posteriori,
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since we will show that in the regime of very deep potential
wells the energy damping mechanism is principally local
for J → J +1 transitions with J > 1 (see Section 7.2). As
a consequence, our model should be satisfactory for giving
qualitative descriptions of the basic physical mechanisms,
that do not explicitly involve atomic jumps between adja-
cent potential wells. For instance, one should exclude the
study of the transport phenomena in optical lattices, since
the non-adiabatic transitions between the potential curves
may be essential for the atomic transport.1

Furthermore, we introduce also a secular-type approx-
imation in our treatment. This approximation consists in
assuming that the Wigner matrix w(z, p, t) is diagonal in
the basis of the adiabatic states |Φi〉 (eigenstates associ-
ated with the potential curves ui). This assumption relies
on the fact that the optical pumping rates between the
different levels are small with respect to the level-energy-
splitting and is generally satisfactory in the case of bright
lattices operating in the deep potential well regime [50].
Some elements of a more complete treatment are given in
Appendix B.

5.2 Model taking into account all adiabatic potential
curves

A natural first attempt for generalizing the approach of
Section 4 for atomic transitions involving high values of
the ground state angular momentum Jg consists of consid-
ering the whole set of the adiabatic potential curves in the
semiclassical equation for the atomic motion. However, by
contrast to the case of the Jg = 1

2 → Je = 3
2 transition,

the adiabatic potentials cannot be generally casted in an
analytical manner.

The general steps of the method used for deriving an
equation of motion for the Wigner quasi-probability den-
sity has been exposed in Section 3. First, the master equa-
tion (4) is expressed in the Wigner representation. Then,
the non-local terms in momentum space involved in the
evolution equation of w (z, p, t) are expanded up to the sec-
ond order in ~k/p and the integration along the emission
direction of the fluorescence photon is performed, taking
into account the angular diagram for spontaneous emis-
sion (13a-b). The equation of motion obtained in this man-
ner is consequently expressed for each internal adiabatic
sublevel |Φm〉, associated with the potential curve um (z).

As mentioned above, we neglect the non-diagonal ele-
ments of the Wigner matrix on the basis of the adiabatic
states. It is then straightforward to show that the resulting
equations of motion can be expressed as a system of lin-
ear coupled differential equations on the quasi-probability
densities Πi (z, p, t) = 〈Φi|w (z, p, t) |Φi〉 of the different

1 One can note incidentally that a recent experiment [49] us-
ing chromium atoms on a Jg = 3 → Je = 4 transition has
shown that despite the existence of non-adiabatic transitions,
the atomic motion can be generally well described in the frame-
work of the adiabatic approximation.

adiabatic sublevels of the ground state:[
∂

∂t
+

p

M

∂

∂z
−

dui (z)

dz

∂

∂p

]
Πi (z, p, t) =

−

γi (z)Πi (z, p, t)−
∑
j 6=i

γji (z)Πj (z, p, t)


+

∂2

∂p2

Dii (z)Πi (z, p, t) +
∑
j 6=i

Dji (z)Πj (z, p, t)

 .
(23)

These equations have a similar structure to the ones of
equation (18), which were derived in the case of the 1

2 →
3
2

transition. However, each adiabatic level is now potentially
coupled to all the other levels via the optical pumping
term (second term of the second member of Eq. (23)),
as well as via the momentum diffusion term associated
with a change of adiabatic level (fourth term of the sec-
ond member of Eq. (23)). Naturally, there is no simple
analytical expression for the different coefficients involved
in the above equations of motion, because there is none
for the |Φi〉 and ui. Some general expressions for these co-
efficients are given in Appendix C. Let us also note that
the coefficients Dji lead generally to very small correc-
tions of the values of the kinetic temperature calculated
by taking into account only the coefficients Dii. This is be-
cause in steady state, momentum diffusion associated with
a change of adiabatic sublevel is a relatively rare event, be-
cause of the Lamb-Dicke effect [5]. The Dji’s have been
consequently neglected in the calculations presented here.

We have now all the necessary elements for the real-
ization of a semiclassical simulation for atomic transitions
connecting high angular momentum states. However, be-
fore presenting the results of such a simulation, we proceed
in the following section to a different formulation of the
model, simplifying the form of the equations of motion
(23), which are consequently reduced in number and put
in the form of equations (18). For this alternative formu-
lation, only two effective potential levels are involved. The
results of the two different approaches are then presented
in Section 7, and particular illustrations of the atom dy-
namics in 1D optical lattices are given.

6 The effective bi-potential method

In our second approach we adopt a “mean potential” point
of view: we replace the multitude of the internal atomic
levels by two effective potential curves accounting for the
effect of the whole set of the adiabatic potentials on the
atomic motion. The choice of this approach is suggested
by the fact that, as it has been shown using the quantum
band model [31,32], the greatest fraction of the atoms
within the lattice populate the lowest band energy lev-
els, which are associated with the lowest adiabatic poten-
tial curve. This means, in a semiclassical language, that
the atom dynamics is dominated by an evolution within
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Fig. 4. Effective bipotential and associated coefficients in the case of the Jg = 4 → Je = 5 atomic transition. (a) Effective
bipotential. The two curves have been obtained by numerically integrating the expressions of the effective radiative forces given
by equations (24a-b). (b) Effective optical pumping rates. (c) Momentum diffusion coefficients: diagonal terms. (d) Momentum
diffusion coefficients: non-diagonal terms.

the lowest potential curve, the other states being involved
episodically during optical pumping jumps of the atom.
Therefore, it may appear reasonable to keep the lowest po-
tential curve2 u1 (z) unchanged, while replacing the other
levels by an effective potential curve. In order to optimize
the choice of this effective potential curve, one should take
into account the fact that the longer an atom occupies a
given adiabatic level the more important this level is to
the cooling mechanism. We therefore evaluate the effec-
tive radiative force (mean classical force associated with
the effective potential curve ueff

2 ) by taking the average
of the forces associated with each of the adiabatic curves,
except u1, weighted by the steady-state occupation rates

2 In the case where Jg is an integer, the lowest potential curve
u1 (z) is well isolated. We implicitely consider this situation.
However, an effective bi-potential can also be found when Jg

is half-integer.

for an atom at rest πst
M (z) of each curve3:

Feff
1 (z) =∇u1 (z) , (24a)

Feff
2 (z) =

∑
M 6=1

πst
M (z)∇uM (z)∑
M 6=1

πst
M (z)

. (24b)

It becomes possible within this treatment to replace
equation (23), by the equation of motion of an atom evolv-
ing inside the effective bi-potential ueff

1,2 associated with
the effective forces (24a) and (24b). This equation of mo-
tion has the same structure as equation (18), obtained in
the case of the 1

2 →
3
2 atomic transition. Therefore, our

procedure considerably simplifies the treatment, since we
are now led to the resolution of two coupled linear differ-
ential equations (one for each effective potential curve),

3 This averaging method may remind one of the dipole po-
tential for two-level atoms (see, e.g., Ref. [51]).
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instead of the 2Jg + 1 coupled equations of the previ-
ous section. The various relevant semiclassical coefficients
of the atomic motion (radiative forces, optical pumping
rates, momentum diffusion coefficients) are also calculated
making use of the averaging method of equation (24b). We
have represented the spatial variations of these coefficients
in Figure 4, for the Jg = 4 → Je = 5 atomic transition.
As it can be noticed, in Figure 4(a) we have plotted the
two curves of the effective bi-potential, ueff

1,2, which are the

primitives of the forces Feff
1 and Feff

2 , instead of ploting
the forces, since these curves can be directly compared to
those of the adiabatic potentials of Figure 3(b). Several
interesting features can be seen in the figure:

– First, the effective potential curve ueff
2 reminds closely

the adiabatic curve u2, whereas ueff
1 = u1 (see, e.g.,

Eq. (24a)). One expects indeed the other higher-energy
potential curves not to be substantially involved in the
motion of a slow atom.

– Second, the departure rate from the curve ueff
1 towards

the curve ueff
2 due to optical pumping (γeff

12 ) exhibits
very sharp maxima near the edges of the potential
curve u1, while its value remains very small outside
these regions. By contrast, the departure rate γeff

21 is
maximum near the bottom of the deepest potential
wells, which simply indicates that the semiclassical
probability to find an atom on the lowest potential
curve is maximum near these points where the light is
circularly polarized.

– One can also notice that the effective diffusion coef-
ficients Deff

ij (i, j = 1, 2) associated with a change of
potential curve seem to be nearly proportional to the
optical pumping rate4. However, a more careful look
at the figure permits to see that signatures of quan-
tum effects similar to photon diffusion at the nodes of
a standing wave persist. For instance, the coefficient
D12 does not vanish completely in locations where the
probability for an atom to switch from the curve u1 to
the curve u2 is zero (i.e. at the bottom of the deepest
potential wells where the polarization is purely circu-
lar). As has been mentioned above, such momentum
diffusion coefficients associated with a change of effec-
tive potential curve will be systematically neglected.

Naturally, one may argue that our effective potential
definition resulting from equations (24a-b) is not unique.
For instance, one could think of evaluating a mean po-
tential level for each of the two families of internal states
η = 1, 2, defined with respect to the parity of the mag-
netic sublevel. Nevertheless, when taking into account the
quantum calculations relative to stationary energy level
populations, one may easily be convinced that most of
the atoms populate energy levels associated with the low-
est adiabatic potential curve. As a result, it is more likely
to give a realistic description of the atomic motion when
taking correctly into account the contribution of this level.

4 We remind that for a classical stochastic process one
has [19]: Dij ∼ q2γij , where q ∈ R.

7 Results, comparison and illustrations

7.1 Results and comparison

We now turn to the results of the numerical simulations
and to the comparison between the two models introduced
in the previous sections (adiabatic potentials or effective
bi-potential methods). We have performed numerical cal-
culations relative to the variation of the kinetic temper-
ature with the potential well depth, to the spatial distri-
bution of the atoms inside the lattice and to the atomic
momentum distribution profile in steady state. For illus-
tration purposes, we shall focus our discussion on the case
of the cesium Jg = 4 → Je = 5 transition. However, the
results relative to temperature calculations performed for
other atomic transitions are also presented.

The numerical resolution of the equation of motion
(using the exact adiabatic potentials or the effective bi-
potential) is carried out by means of a semiclassical Monte
Carlo simulation. The basic idea of the algorithm has al-
ready been developed in Section 4 for the 1

2 →
3
2 tran-

sition. There is, however, an important difference in the
present case, which is that the relevant semiclassical coeffi-
cients involved in the equations of motion cannot be calcu-
lated in an analytical manner. In order to overcome this
problem, we numerically evaluate the variation of these
coefficients as a function of z over a spatial period of the
lattice. The spatial step of the grid that we consider is
λ/2000. We thus first generate a discrete “database” con-
taining the spatial variations of the optical pumping rates,
the momentum diffusion coefficients and of the compo-
nents of the radiative force for each internal level. Sec-
ond, we proceed to the simulation of the atomic trajecto-
ries using a second order Runge-Kutta algorithm for inte-
grating the equations of motion. It is therefore necessary
to evaluate the various relevant semiclassical coefficients
of the atomic motion at each point zi(t) of a trajectory.
For this we use a linear interpolation method between the
two closest points of the previously constructed discrete
“database”.

7.1.1 Kinetic temperature; comparison between the
different models

First, we present a systematic study of the variation of
the kinetic temperature as a function of the potential well
depth, performed for different atomic transitions. Figure 5
shows the results obtained for Jg = J → Je = J+1 transi-
tions, for ground state angular momenta J = 1, 2, 3 and 4.
Our numerical calculations correspond to a laser detuning
of ∆ = −10Γ , and have been averaged over 5000 atoms
for a time interval corresponding to 1000/Γ ′ in the sta-
tionary regime. We have plotted on each graph the curves
corresponding to the adiabatic potential calculation, those
calculated using an effective bi-potential method, as well
as the results obtained by using the quantum band model.
This allows to perform comparisons, as well as to test the
accuracy of our models.
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Fig. 5. Kinetic temperature as a function of the optical potential well depths calculated for several atomic transitions; compari-
son between the different numerical models. (a) Jg = 1→ Je = 2 transition, (b) Jg = 2→ Je = 3 transition, (c) Jg = 3→ Je = 4
transition, (d) Jg = 4 → Je = 5 transition. Tbands is the curve obtained using the band model in the framework of the secular
approximation, Ttot corresponds to the semiclassical model taking into account the whole set of the adiabatic potentials, and
Teff is the result of the effective bi-potential semiclassical model. The semiclassical calculations have been performed for a laser
detuning of ∆ = −10Γ , with a sample of 5000 atoms. The averaging time is 1000/Γ ′, after an evolution of the atomic system
(in order to reach the steady state) of 3000/Γ ′.

First of all, one notices that apart from the case of
the Jg = 1 → Je = 2 transition, there is a very good
agreement between the effective bi-potential model and
the adiabatic potential one. This is of course a favourable
argument for the use of the effective bi-potential model. It
should be noticed that the 1 → 2 transition is a particu-
lar case, which must be considered separately. In fact, the
spatial structure of the adiabatic potential shown in Fig-
ure 3(a) differs substantially from the ones of the J → J+1
transitions, involving J > 1 (see, e.g., Fig. 3(b)). In par-
ticular, the minima of the adiabatic potential curve u3

(highest potential curve) do not coincide with those of
the curve u1 (lowest potential curve) and the potential
curve u2 is not modulated in space. As a result, one ex-
pects in this case the atomic semiclassical trajectories to
be more or less similar to those obtained in the case of

the Jg = 1
2 →

3
2 transition and in particular the atom to

spend relatively long time intervals on each of the adia-
batic levels of the optical potential. This means that the
detail of the spatial variation of the whole set of the adi-
abatic potential curves is essential for the atomic motion.
Therefore, the effective bi-potential approach constitutes
a rather rough approximation in this case.

Second, we compare the results of the semiclassical
simulations to those of the band model [31], in order to
have a more precise idea of the validity domain, as well as
of the degree of credibility that one should associate with
the semiclassical approximation. For each of the atomic
transitions that we have considered, the results obtained
using the band model have been represented with dashed
lines in Figure 5. A very good agreement is found be-
tween the quantum and semiclassical models in the deep
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Fig. 6. Steady-state atomic spatial distribution in the lattice for the Jg = 4 → Je = 5 transition. (a) Spatial distribution in
each potential curve. (b) Spatial distribution for the potential curves ui with i 6= 1. In Figure (b), the dashed line corresponds
to the spatial distribution obtained for the effective bi-potential curve ueff

2 . As can be clearly seen in Figure (a), the occupation
rate of the adiabatic curve u1 is largely predominant. The calculation has been performed for ~∆′ = −2000ER, ∆ = −10Γ ,
with a sample of 10000 atoms, an averaging time of 1000/Γ ′, after an evolution of 3000/Γ ′ in order to reach the steady state.

potential well regime (domain of linear variation of the
temperature curves). In particular, the semiclassical mod-
els permit to obtain correct values for the slopes of the
temperature variation in this domain and lead to val-
ues of the temperature very close to the ones obtained
by the quantum model5. This agreement is remarkable,
if one takes into account the great number of simplifica-
tions that have been introduced in the framework of our
semiclassical treatment. Hence, it appears that, despite
the apparent complexity of optical lattices corresponding
to high values of Jg, the underlying basic physics of such
lattices is actually quite simple.

The integration time which is necessary for reaching
the steady state depends on the potential well depth. In
order to overcome this problem, we have chosen a rel-
atively long integration time corresponding to 3000/Γ ′.
With a time step dt = 0.02/Γ ′, this evolution time corre-
sponds to 150000 statistical realizations. Moreover, each
point of the curves of Figure 5 is calculated with an av-
eraging time tav = 1000/Γ ′. Typically, each point cal-
culated using the effective bi-potential model requires a
couple of CPU hours on a RISC 6000 3AT computer
workstation. This reasonable computing time is another
favourable argument for the use of our semiclassical mod-
els. Generally, for values of the potential well depth which
are well above the threshold of the cooling mechanism, a
typical evolution time of 1000/Γ ′ is sufficient for the sys-
tem to reach the steady state. For the sake of definiteness
we consider as a limiting value of this regime the value
~∆′lim = 1000ER. By contrast, below this limiting value
of the potential well depth, the simulations converge much
slower towards the steady-state result. Moreover, the re-
sults obtained in this shallow potential wells regime corre-

5 We note that the maximum discrepancy between the quan-
tum and the semiclassical results on pr.m.s. remains generaly
lower than 1 ~k.

spond to a sharp increase of the atomic temperature and
are not in good quantitative agreement with the quantum
model. As a matter of fact, for weak values of the poten-
tial well depth, our semiclassical approximations may be
questionable. In particular, the probability of undergoing
a non-adiabatic transition between the different potential
curves is stronger for fast atoms, and there is an impor-
tant fraction of free (and therefore relatively fast) atoms
for shallow potential wells. This may explain the high tem-
peratures that we obtain in this regime which are not in
good quantitative agreement with the band model6.

7.1.2 Atomic spatial distribution in the lattice

We now turn to the study of other characteristic station-
ary properties of the lattice. In Figure 6(a) we have plotted
the spatial density as a function of the potential curve, for
the Jg = 4 → Je = 5 transition and for a maximum light
shift corresponding to ~∆′ = −2000ER. It may be seen
that the distribution Πst (z) has the same λ/4 spatial pe-
riodicity as the potential, the contribution of the potential
curve u1 (z) being by far predominant when compared to
the ones of the other adiabatic levels. This effect clearly
indicates that in steady state the atoms mostly populate
the lowest potential curve, as has been previously under-
lined. The curves presented here are in very good agree-
ment with the ones obtained by using a quantum Monte
Carlo wave function simulation [52]. As expected from the
study of the previous paragraph, this agreement only holds
in the range of deep potential wells where the adiabatic
approximation is valid.

6 Non-adiabatic transitions between potential levels may
lead a priori to a more efficient Sisyphus cooling. As a result,
neglecting such non-adiabatic effects means neglecting an ad-
ditional cooling mechanism, which explains why we get higher
temperatures.
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Fig. 7. Stationary momentum distribution in the lattice for the
Jg = 4→ Je = 5 transition. The full line represents the result
of the numerical simulation taking into account the complete
internal adiabatic structure. The dotted line corresponds to
the simulation using the effective bi-potential method. Both
calculations have been performed for an optical potential well
depth given by ~ |∆′| = 2000ER, a laser detuning of ∆ =
−10Γ , with a sample of 20000 atoms. The averaging time is
1000/Γ ′, after an evolution (in order to reach the steady state)
of 3000/Γ ′.

Furthermore, we have plotted in Figure 6(b) a zoom
of Figure 6(a), showing the spatial distribution on the
adiabatic potential curves uM , for M 6= 1, as well as
the atomic density associated with the effective level ueff

2

(dashed curve). As expected, the density found for the ef-
fective level is very close to the one found for the adiabatic
level u2.

7.1.3 Momentum distribution profile

In order to obtain the momentum distribution profile in
steady state, we proceed by realizing a histogram of the
atomic momenta on a relatively large statistical ensemble.
Figure 7 shows the result of such a calculation performed
for the Jg = 4 → Je = 5 transition, for a potential well
depth corresponding to ~∆′ = −2000ER, averaging on
20000 atoms, after a free evolution of 3000/Γ ′ for reaching
the steady state. We have plotted in the same figure the
results obtained using the two different calculation mod-
els (i.e. the model taking into account all the adiabatic
potential levels, or the one making use of the effective
bi-potential). The agreement between the two methods is
very good. Moreover, we have compared these results to
those of a quantum Monte Carlo wave function simulation
[52] and observed a very good agreement. Here again, the
agreement with quantum calculations is worse for shal-
lower potential wells.

7.2 Discussion of a few physical processes in optical
lattices

We have shown so far that our semiclassical models give
correct estimates for the atomic temperature of optical
lattices corresponding to the deep potential well regime.
We wish now to illustrate another particularly interesting
aspect of such models, which is the possibility of getting
intuitive physical pictures for a priori complex fundamen-
tal physical mechanisms involved in the dynamics of atoms
in optical lattices.

7.2.1 The local cooling mechanism

We shall first concentrate on the study of the nature of
the cooling mechanism in 1D optical lattices. The general
context of a semiclassical treatment is particularly well
adapted to the study of the atom dynamics in terms of
single-atom trajectories.

In order to illustrate the differences that exist between
the case of the 1

2 →
3
2 transition and J → J + 1 transi-

tions with J > 1, we have represented in Figure 8 typical
trajectories for J = 1/2 and J = 4. The various parts of
each trajectory corresponding to different potential curves
have been represented using different types of dots, and
this permits in particular to give an estimate of the oc-
cupation time of each internal level. We have also plotted
the time evolution of the mechanical energy of the atom
on the same time scale for both cases (Figs. 8(b) and (d)),
in order to illustrate better the different energy exchange
mechanisms between the atom and the light field.

In the case of the 1
2 →

3
2 transition, the figure permits

to observe the following two features of the atomic motion:
on the one hand, the atom spends comparable time inter-
vals on each of the two levels m = ± 1

2 of the optical bi-
potential, undergoing almost regularly time-spaced jumps
between these two levels; on the other hand, the squared
variance of the atomic position ∆z2 =

〈
z2
〉
− 〈z〉2 shows

a rapid increase7. An examination of the time evolution
of the atomic energy (Fig. 8(b)), permits to see that the
cooling mechanism essentially occurs on a spatial scale of
several potential wells and requires several optical pump-
ing cycles. (It may be noticed that the abrupt changes in
the atomic energy are precisely associated with a change
of the internal sublevel due to optical pumping.)

For the Jg = 4→ Je = 5 transition, the typical atomic
trajectory is quite different, as seen in Figure 8(c). One
first notices that during the longest part of the trajectory
the atom remains in the lowest potential curve (curve u1),
undergoing a few optical pumping cycles towards the other
potential curves. Furthermore, in most cases, the atomic
motion is principally restricted to the lowest two potential
curves u1 and u2. The low departure rate from the lowest
potential curve towards the other curves in the vicinity of

7 For potential well depths much more shallower than the
one corresponding to Figure 8(a), it is possible to observe tra-
jectories for which the atom covers very long distances without
being trapped in a potential well [53].
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Fig. 8. Illustration of typical “trajectories” followed by an atom in a 1D lattice and atomic energy diagrams as a function of
time (in 1/Γ ′ units). (a) Trajectory and (b) variation of the total energy of the atom in the case of the Jg = 1

2 → Je = 3
2

transition: the spatial scale of cooling corresponds to several potential wells. The different type of dots indicate the Zeeman
sublevel in which the atom evolves. The horizontal lines of Figure (b) labelled B and E represent, respectively, the energy
levels of the bottom and of the edge of the optical bi-potential wells. The calculation has been performed for U0 = 500ER and
∆ = −10Γ . (c) Trajectory and (d) total energy of the atom as a function of time, for the case of the Jg = 4→ Je = 5 transition.
The spatial scale of cooling is a fraction of an optical wavelength. The various parts of the trajectory associated with different
adiabatic potential curves have been represented using different types of dots. The horizontal lines of Figure (d) labelled B i and
Ei represent, respectively, the energy levels of the bottom and the edge of the optical potential well ui. The parameters of the
numerical simulation are ~ |∆′| = 2000ER and ∆ = −10Γ .

the bottom of the potential wells is due to the very weak
value (

√
1/45) of the Clebsch-Gordan coefficient that cou-

ples |g,±4〉 to |e,±3〉. This is because the minima of the
potential curve u1 are located at sites where the light po-
larization is purely circular. At these locations, the inter-
nal state |Φ1〉, associated with u1, perfectly overlaps with
the Zeeman sublevel m = +4 (resp. m = −4) for a σ+

(resp. σ−) site. Moreover, we remark that the atom re-
mains spatially localized on the spatial extent of a single
potential well, during considerably long time intervals.

Within the framework of the adiabatic approximation
it is therefore possible to extract an interesting feature of
the cooling process, by invoking a local Sisyphus cooling

mechanism, taking place within a single potential well.
In order to illustrate this mechanism, let us consider an
atom evolving on the lowest potential curve (curve u1).
This atom climbing up a potential hill has some probabil-
ity to be optically pumped in the upper potential curve
u2, because the departure rate γ12 takes significant values
away from the minima of u1. From this point, the atom
may return towards the bottom of the potential well u2,
where an optical pumping process brings it in u1 (the de-
parture rate towards u1 is a maximum near the bottom of
the potential wells of u2). During such a cycle, the atom
loses energy on average, because it spends more of its ki-
netic energy climbing a steep potential well than it regains
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Fig. 9. Local “Sisyphus” cooling mechanism occurring for
Jg = J → Je = J + 1 atomic transitions (J > 1).

on the descent of a shallow one (see Fig. 9). As a conse-
quence, the iteration of this type of cycles leads to a local
Sisyphus cooling mechanism.

The existence of a local cooling mechanism may ex-
plain why the adiabatic approximation (which is well jus-
tified near the bottom of the potential wells) leads to very
good estimates of the temperature of the lattice. However,
it should be noticed that the local cooling mechanism is
not self-sufficient for giving a complete description of the
cooling occurring in optical lattices. An atom eventually
changes potential well and therefore a non-local cooling
mechanism is also involved. The question of local vs. non-
local cooling has been addressed recently by I. H. Deutsch
et al. [54] in the framework of a different approach, involv-
ing an analysis of the system on the basis of the localized
Wannier states. This approach led to the conclusion that
for shallow potential wells (on the order of a few hundred
recoil energies) and for a Jg = 2 → Je = 3 transition
the cooling mechanism is dominated by hopping between
different sites rather than by local cooling.

7.2.2 Paramagnetism of optical lattices

As has been recently shown, optical lattices subject to
a longitudinal magnetic field exhibit paramagnetism [13–
15]. Moreover, in the low magnetic field regime, a spin
temperature associated with the internal degrees of free-
dom was introduced and shown to be on the order of mag-
nitude of the kinetic temperature [14]. So far, all theoreti-
cal studies relative to these magnetic properties of optical
lattices have been performed using the band model. In
this paragraph we show that these properties can also be

understood and characterized in the framework of the ef-
fective bi-potential semiclassical approach.

As previously, we focus on the case of the Jg = 4 →
Je = 5 atomic transition and of the 1D lin⊥lin configura-
tion, but we now also consider a weak longitudinal mag-
netic field B = B0ez. In the presence of the magnetic field
the effective Hamiltonian (Eq. (5)) becomes

Heff =
P 2

2M
+ ~∆′Â (z) +

~ΩB

2Jg
Ĵz, (25)

where ~ΩB stands for the relative Zeeman shift between
the outermost magnetic levels m = 4 and m = −4. We
first find the adiabatic eigenstates of the Hamiltonian (25)
and consequently deduce the associated effective motion
coefficients, as explained in Section 5; second, we numer-
ically simulate the atomic motion within the resulting
effective bi-potential in order to obtain the steady-state
properties of the system.

Let us first discuss the form of the potentials. Fig-
ure 10(a) represents the bi-potential corresponding to a
light-shift ~∆′ = −2000ER and to a Zeeman shift ~ΩB =
−800ER; this figure should be compared to Figure 4(a),
that was obtained for zero magnetic field. We notice that
for ΩB = 0, two adjacent potential wells corresponding to
opposite circular polarizations are totally equivalent. The
major effect of the magnetic field is to break this symme-
try and to shift oppositely the adjacent potential wells of
the curve u1, associated locally with the Zeeman sublevels
m = 4 and m = −4. Therefore, potential wells associated
with a σ+ polarization (hence with a positive magnetiza-
tion) become deeper, and potential wells associated with
a σ− polarization (hence with a negative magnetization)
become shallower as the magnetic field is increased.

Furthermore, Figure 10(b) shows the spatial variation
of the effective optical pumping rates for non-zero mag-
netic field. As previously, this figure is to be compared
to Figure 4(b) that corresponds to the zero-field case.
One notices that the magnetic-field-induced modification
of these effective quantities is such that the global de-
parture rate from potential wells associated with a σ−

polarization is significantly increased with respect to the
ones that correspond to a σ+ polarization. One therefore
expects a net population transfer from the shallower po-
tential wells towards the deeper ones and hence the ap-
pearence of an average non-zero magnetic moment in the
lattice.

We now proceed as in Section 5 and calculate the
steady-state spatial distribution in the lattice for non-zero
magnetic field. It may be seen in Figure 11, that the frac-
tion of atoms occupying the deeper potential wells, asso-
ciated with a σ+ polarization, is increased with respect to
that of the adjacent, shallower potential wells, which are
associated with a σ− polarization. This result confirms
the intuitive idea of population transfer between adjacent
potential wells that correspond to opposite circular po-
larizations. It is moreover possible to estimate the ratio,
n+/n−, between these occupation rates in steady state,
by considering the ratio between the surfaces of two ad-
jacent peaks of the spatial distribution curve. Figure 12
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Fig. 10. Effective bipotential and associated coefficients for the Jg = 4 → Je = 5 atomic transition in the presence of a weak
longitudinal magnetic field. (a) Effective bipotential (recoil units). (b) Effective optical pumping rates (Γ ′ units). (c) Momentum
diffusion coefficients (Γ ′ · (~ · k)2 units): diagonal terms. (d) Momentum diffusion coefficients (Γ ′ · (~ · k)2 units): non-diagonal
term. The figure corresponds to ~∆′ = −2000ER and ~ΩB = −800ER.

represents a typical variation curve of the ratio n+/n− as
a function of the Zeeman shift ~ΩB. This variation has
been fitted by an exponential law:

n+

n−
(ΩB) = exp

(
−
~ΩB

kBTs

)
. (26)

This fit permits to introduce a spin temperature Ts that
exhibits a linear variation with the potential well depth
~∆′, for deep potential wells, in agreement with refer-
ence [14].

The study of the paramagnetism presented here does
not suffer from two problems found in the traditional
quantum method (band model and secular approxima-
tion): first, because of the resonances found on the varia-
tion of the band population withB0, the different averaged
physical observables of the lattice (temperature, magneti-
zation) also acquire sharp resonant variations that look as
noise [13,55]. Second, because of the delocalised charac-
ter of the Bloch eigenfunctions basis, it is not straightfor-
ward to calculate the ratio between the occupation rates
n+/n−.

8 Conclusions

We have presented in this article two semiclassical numeri-
cal approaches that permit to perform calculations on 1D
optical lattices for realistic atomic transitions Jg → Je

involving high values of angular momenta. The first ap-
proach consists in numerically simulating the atomic mo-
tion within the whole set of adiabatic potential levels that
result from the diagonalization of the light-shift operator.
The second approach is based on a more dramatic approxi-
mation which consists in replacing the exact optical poten-
tial by an effective bi-potential. We have shown that the
principal features of the atom dynamics are kept by this
model. Furthermore, in the deep potential wells regime
a very good agreement is obtained with exact quantum
models for the kinetic temperature and for the steady-
state localization properties of the lattice.

We can conclude from our study that the semiclas-
sical models, based on the adiabatic approximation are
quite satisfactory for the description of phenomena which
take place inside a single potential well. By contrast, the
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Fig. 11. Steady-state spatial distribution in the lattice for the
Jg = 4 → Je = 5 transition in the presence of a longitudinal
magnetic field. The calculation has been performed for ~∆′ =
−2000ER, ∆ = −10Γ , ~ΩB = −800ER with a sample of 5000
atoms. The origin of the z-axis (in optical wavelength units)
corresponds to a σ+ polarized site.

Fig. 12. Ratio n+/n− between steady-state occupation rates
of potential wells corresponding to opposite circular polariza-
tion as a function of the amplitude of the Zeeman shift (open
dots). The calculation is performed with a sample of 5000
atoms, for a potential well depth given by ~ |∆′| = 1500ER,
and a laser detuning of ∆ = −10Γ . The variation is fitted by
an exponential law (plain curve) that leads to a spin tempera-
ture Ts = 580ER/kB.

validity of such models is not proved for physical phenom-
ena taking place on a spatial extent of several potential
wells. In particular, they are questionable for the study
of transport phenomena. The remarkable handleability of
our models is particularly promising for future extensions
in the case of multi-dimensional laser configurations and
for complex atomic transitions involved in current exper-
iments.

The comparison with the more traditional quantum
models shows the interest of these semiclassical models

for the study of bi- and tri-dimensional optical lattices. In
the band model the calculation of the atomic wave func-
tions and of the associated stationary populations involve
algebraic operations on high-dimension arrays. In a 2D
or 3D lattice the physical problem cannot be simply split
into several one-dimensional problems, because the opti-
cal potential couples the components of the atomic mo-
tion along the different directions. In such a case, it is
obvious that the dimension of the arrays that one has to
diagonalize becomes rapidly excessive. Furthermore, the
band model is based on a secular approximation which
imposes important restrictions on the validity conditions
of the model [32]. Our approaches permit, additionally,
to overcome another typical difficulty of the band model
which is the existence of population resonances for some
values of the potential well depths [33]. These lead to res-
onant variations of the relevant quantities (temperature,
magnetization, etc.) [13,55] which are not observed ex-
perimentally. Other quantum models such as the exact
quantum wave functions Monte Carlo simulations have
already been developed successfully in the case of 3D opti-
cal molasses [37]. In particular, the local quantum-jumps
method introduced by P. Zoller and coworkers [53] has
been successfully used in the characterization of the trans-
port properties of optical lattices. However, such quantum
Monte Carlo techniques usually involve very long numeri-
cal calculations. Besides these heavy approaches, the semi-
classical simulation models appear to be a very promising
option, which permits to give at the same time correct
quantitative results and clear physical pictures.

Appendix A: Choosing the time step for the
integration

A.1 Case of the Jg = 1
2
→ Je = 3

2
transition

The numerical simulation is realized on a sample of Nat

atoms, during an averaging time that is given by T =
(Nstep −N0) dt; Tst ≡ N0dt is a sufficiently long time for
the system to reach steady state (a typical order of magni-
tude of Tst is given below); Nstep is the number of statisti-
cal realizations. The initial conditions of each realization
are chosen randomly. To diminish the statistical uncer-
tainty and to have access to the most probable values of
the different observables in the steady state, one has to
optimize the choice of the parameters Nat and Nstep. Fur-
thermore, one has to take into account a certain number
of restrictions in the choice of the time step dt.

The choice of the integration time step dt should per-
mit to account correctly for the temporal and the spatial
variations, in the scale of the atomic motion, of the var-
ious relevant physical quantities (radiative forces, optical
pumping rates, momentum diffusion coefficients) involved
in the equation of motion. On the one hand, the integra-
tion time step should be smaller than the typical time scale
separating two sequential spin flips due to optical pump-
ing (i.e., dt � τp, with τp = 9/(2Γ ′)) and, on the other
hand, the typical distance covered by an atom during the
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time interval dt should be much less than λ/2, which is the
typical scale of the spatial variation of the different coeffi-
cients characterizing the atomic motion. One can express
these two conditions in the following form8:

dt�
3∆/Γ

U0/~
, (A.1)

and:

dt�
λ/2

10~k/M
, (A.2)

where we have supposed that the typical order of magni-
tude of the atomic momentum is given by p ' 10~k, for a
typical value of the potential well depth characterized by
U0 ' 1000ER. Generally, the first of these two conditions
is much more restrictive than the second one. A typical
choice of the time step satisfying both of the above con-
ditions is dt = 0.1/Γ ′. With such a time step, N0 = 4000
is sufficient in order to reach the steady state.

A.2 Case of higher angular momenta Jg > 1

The choice of the time step for the integration of the equa-
tions of motion is always limited by the fact that each
atom should experience the spatial variations of the dif-
ferent coefficients during its trajectory. A careful look at
Figures 3(b) and 4 permits one to see that some of the adi-
abatic potential curves for the 4→ 5 transition, as well as
the effective optical pumping rates and momentum diffu-
sion coefficients, exhibit sharp local variations at the scale
of λ/1000. One must therefore choose a time step dt, such
that the typical distance covered by an atom during dt is
on the order of 10−3λ:

v · dt . 10−3λ. (A.3)

Assuming that the average atomic velocity v is of the order
of 10~k/M (which is of course only a rough estimate, cor-
responding to a typical potential well depth of 1000ER),
we are led to the following restrictive condition:

Γ ′ · dt . 10−3~∆
′/ER

∆/Γ
. (A.4)

This condition provides an upper limit for the choice of the
integration time step, as a function of the potential well
depth and of the laser detuning. One could then naively
argue that the use of an infinitely small time step is sat-
isfactory. However, it should be underlined that without
making use of the delay function [56], one has to consider
a lower boundary for the value of dt, knowing that a very

8 Another restrictive condition that should be considered
here is that the time step should correctly account for the os-
cillatory motion of a slow atom (i.e., that dt � 2π/Ωv, Ωv

being the angular vibration frequency at the bottom of the
potential wells). For typical orders of magnitude of the various
parameters of the lattice, this condition turns out to be more
or less equivalent to (A.2).

small integration time step would lead to a very small
probability for the atom of changing potential level and
that the random number generator is not totally uniform
for such small values [57]9. Generally, for a laser detuning
of ∆ = −10Γ , a time step dt = 0.02/Γ ′ satisfies both of
the above restrictive conditions.

The simulation presented in this paper generally cor-
responds to a sample of Nat = 5000 atoms, and to ∆ =
−10 Γ 10. The initial spatial distribution of the atoms is
assumed to be uniform, their initial momentum pin being
also uniformly distributed in the interval [−20~k, 20~k]
and the initial potential sublevel is obtained randomly.
Generally, for values of the potential well depths relatively
large compared to the threshold of the Sisyphus cooling
mechanism, the steady state is reached after a time evolu-
tion of approximatively 1000/Γ ′. By contrast, we have ob-
served that numerical simulations performed for relatively
small potential well depths (~∆′ . 800ER) needed much
longer integration times for reaching the steady state. As
a matter of fact, in this range of parameters, the use of the
adiabatic approximation becomes questionable and the re-
sults of the semiclassical model may lose their accuracy.

Appendix B: The gauge potential

The adiabatic approximation that we have used in the pa-
per consists more rigorously in neglecting the coherences
of the density matrix between states |Φi〉. One can show
that the adiabatic approximation is equivalent to suppos-
ing that the Wigner matrix w (z, p, t) is diagonal in the
|Φi〉 basis, but the effective Hamiltonian (5) involved in
the equation of motion should be replaced by [50]

Heff =
(p−A)2

2M
+ Λ̂ (r) + V (r) . (B.1)

This new expression of the effective Hamiltonian takes into
account two different contributions

– A first term accounting for a vector potentialA, whose
diagonal elements in the |Φi〉 basis can be written as:

Ai (r) = 〈Φi|A (r) |Φi〉 = i~ 〈Φi|∇Φi〉 . (B.2)

– A second term representing a scalar potential, that can
be expressed in the following way:

Vi (r) =
1

2M

[
〈Φi|A

2 (r) |Φi〉 − 〈Φi|A (r) |Φi〉
2
]
.

(B.3)

In the case where the adiabatic states have real compo-
nents in the ground state Zeeman sublevel basis (which

9 It should also be noticed that a very small time step would
drastically increase the simulation time required to reach the
stationary regime.
10 We have also performed calculations for ∆ = −5Γ , for the
4 → 5 transition, without observing a noteworthy change of
the results presented in the paper.
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is the case for the 1D lin⊥lin configuration considered
here), this expression can be reduced to

Vi (r) = −
~

2M
〈Φi|∇

2Φi
〉
. (B.4)

These potentials are of topological nature, since they de-
pend on the spatial structure of the |Φi〉 states; they es-
sentially depend on the geometry of the laser beams.

In the case of the lin⊥lin laser field configuration and
for J → J + 1 atomic transitions that we consider here
the light-shifts of all the ground state sublevels are large
compared to the recoil energy ER. As a result, the adia-
batic potentials lead to contributions which are generally
larger by several orders of magnitude compared to those of
the potentials of equations (B.2) and (B.3) [50]. It is thus
generally reasonable to neglect the effect of these poten-
tials, as well as of the other contributions to the different
coefficients involved in the semiclassical equations of mo-
tion, which are related to the spatial modulation of the
adiabatic states11.

Appendix C: Optical pumping and momentum
diffusion coefficients in the adiabatic states
basis

In this appendix we give some general expressions for the
different coefficients appearing in the equation of motion
(23). The expressions are given in the {|Φi〉} basis, mak-

ing use of the operators Â (z) and B̂q (z) (introduced in
Eqs. (6) and (12), respectively):

– To zeroth order in ~k/p, one obtains the effect of the
optical pumping between the different internal sub-
levels for a free particle of constant velocity. This
effect is characterized by two rates proportional to
Γ ′ = ΓsL/2 :
i. The effective departure rate of level i which can be

written:

γi = Γ ′ 〈Φi| Â |Φi〉 − Γ
′
∑

q=0,±1

∣∣∣〈Φi| B̂q |Φi〉∣∣∣2 .
(C.1)

In this expression, the first term describes the
global departure from level i, whereas the second
term accounts for processes where the atom returns
back to its initial level, after having emitted a flu-
orescence photon of polarization εq.

ii. The feeding rate of the level i from the level j which
is given by

γji = Γ ′
∑

q=0,±1

∣∣∣〈Φj | B̂q |Φi〉∣∣∣2 . (C.2)

11 It should be noticed that the contributions of the scalar
potential of equation (B.3) may be non-negligible in the vicin-
ity of the avoided crossings between potential curves. In the
deep potential wells regime, it is nevertheless still reasonable
to neglect this term, since an atom spends most of the time
near the bottom of the potential wells.

– The mean radiative force, appearing to the first order
in ~k/p in equation (23), has only a reactive compo-
nent corresponding to the effect of the adiabatic po-
tentials. The expression of this force for the level i is
given by

F i (z) = −
dui (z)

dz
ez. (C.3)

– Last, the second order terms in ~k/p are characterized
by two types of momentum diffusion coefficients12:
i. The coefficients Dii, accounting for the momen-

tum diffusion related to fluorescence cycles in which
there is no change of potential curve:

Dii =
~

2Γ ′

8
∂2
z 〈Φi| Â |Φi〉

+
~

2k2Γ ′

5

(
1

2

∣∣∣〈Φi| B̂0 |Φi〉
∣∣∣2 +

∣∣∣〈Φi| B̂1 |Φi〉
∣∣∣2

+
∣∣∣〈Φi| B̂−1 |Φi〉

∣∣∣2)
−
~

2Γ ′

8

∑
q=0,±1

(
〈Φi| B̂

†
q |Φi〉 ∂

2
z 〈Φi| B̂q |Φi〉

−2
∣∣∣∂z 〈Φi| B̂q |Φi〉∣∣∣2

+ 〈Φi| B̂q |Φi〉 ∂
2
z 〈Φi| B̂

†
q |Φi〉

)
. (C.4)

ii. The coefficients Dji, associated with a fluorescence
cycle where the atom switches from the potential
curve j to the curve i:

Dji =
~

2k2Γ ′

5

(
1

2

∣∣∣〈Φj | B̂0 |Φi〉
∣∣∣2 +

∣∣∣〈Φj | B̂1 |Φi〉
∣∣∣2

+
∣∣∣〈Φj | B̂−1 |Φi〉

∣∣∣2)
−
~

2Γ ′

8

∑
q=0,±1

(
〈Φi| B̂

†
q |Φj〉 ∂

2
z 〈Φj | B̂q |Φi〉

−2
∣∣∣∂z 〈Φj | B̂†q |Φi〉∣∣∣2

+ 〈Φj | B̂q |Φi〉 ∂
2
z 〈Φi| B̂

†
q |Φj〉

)
. (C.5)
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